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PROPERTIES OF MEASURE-PRESERVING 

GROUP ACTIONS 

BY 
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ABSTRACT 

This paper presents some extensions and applications of the method of 
approximations of ergodic theory (see [6[). Two notions of approximation are 
defined which are applicable to arbitrary tr-finite-measure-preserving group 
actions (see w Building upon results of [2], [13] and [6], the speeds of such 
approximations are related to the questions of spectral multiplicity, spectral 
type and ergodicity (see w For the result on spectral multiplicity, there is first 
established a general result concerning the spectral decomposition of unitary 
representations (see w The last section is devoted to applications--chiefly to 
certain classes of cylinder transformations which arise in connection with 
irregularity of distribution (see [12]). These transformations provide examples 
(on infinite measure spaces) of approximations of all finite multiplicities. The 
method of approximations is shown to be a natural tool for the study of their 
spectral properties. 

Introduction 

In their  f undamen ta l  pape r  [6], K a t o k  and Stepin in t roduced  the " m e t h o d  of 

app rox ima t ions "  into ergodic theory.  In so doing they showed that  many  

proper t i es  of  a measu re -p rese rv ing  a u t o m o r p h i s m  of a probabi l i ty  space  may  be  

deduced  f rom the exis tence of certain types  of approx ima t ion  by periodic  

t ransformat ions .  

W e  shall p resent  some  extensions  and appl icat ions  of those  aspects  of the  

m e t h o d  of approx ima t ions  which deal  with the de te rmina t ion  of spectra l  

proper t ies .  O u r  results build upon  the deve lopmen t s  which have  a l ready been  

achieved by Chacon  [2] and Stepin [13]. 

W e  begin,  in the  next  section, by defining two not ions  of approx imat ion ,  each 

of which is appl icable  to arbi t rary  measure -p rese rv ing  g roup  actions. 
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Our main general result, Theorem 3.1, relates the spectral multiplicity of a 

measure-preserving action of a type I group to the speed with which it admits 

finite multiplicity approximations. The key to the proof of this theorem is 

Proposition 2.1, a result in the spectral decomposition theory of unitary group 

representations. 

Turning to the link between cyclic approximations and the questions of 

singularity of spectral type and ergodicity, we have included the statements of 

two theorems, 3.4 and 3.5, which place in our more general context earlier 

results of [13] and [6]. 

The final section is devoted to applications, including an investigation of the 

spectral properties of the class of cylinder transformations {T~,~ : a,/3 E (0, 1)}, 

defined on [0, 1) • R as follows: 

T,,~(x,t)=(x+a(modl),t+X|o.~(x)-/3), for all (x, t) E [0, 1) • R. 

These transformations, which arise naturally in connection with the irregularity 

of distribution of the sequences ha, n = 0, 1 ,2 , - . . ,  a irrational, have been 

studied by a number of authors [1, 3, 8, 11, 12]. However,  it seems that, until 

now, only the question of their ergodicity has received attention. In w 

conditions on a and/3 are given under which the transformation T~.~ has simple, 

singular spectrum. There also appears a class of cylinder transformations each of 

which has spectral multiplicity uniformly equal to two (see Corollary 4.10). 
This work forms part of the author's Ph.D. thesis at the University of 

Warwick. Much gratitude is extended to the author's research supervisor, Dr. K. 

Schmidt, for his boundless help and encouragement. The author also wishes to 

thank the University of Western Australia for their financial support in the form 

of a Hackett  Studentship. 

w Finite multiplicity and cyclic approximations 

Let X be a standard Borel space equipped with a g-finite measure/z.  

DEFINITION 1.1 (cf. del Junco [5]). (a) A semi-partition (of X)  is a countable 

collection of pairwise-disjoint, non-null, measurable subsets of X. 

(b) A partition (of X)  is a semi-partition whose elements cover all of X. 

(c) Two semi-partitions ~ and ~' shall be described as disjoint if ( I,.JcE, C) and 

((-Jc,~r are disjoint subsets of X. In this case, s r v ~' shall denote the 

semi-partition which contains all the elements of both ~r and s r 
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DEFINITION 1.2. A sequence of semi-partitions ~(n), n = 1 ,2 , . - .  is said to 

converge to the unit partition, denoted ~(n)--> e, if, whenever A is a measurable 

subset of X of finite measure, then 

lim~ (AAA (~:(n))) = 0, 

for some choice of successive approximations to A by unions, A(~:(n)), of the 

elements of ~(n), n = 1 , 2 , - . . .  

Let there be given a measure (/z )-preserving, Borel action, ( g , x )~ g  .x, 
g ~ G, x ~ X, of a locally compact second countable group G on the space X. 

In the definitions that follow, N denotes a positive integer and f(n), 
n = 1 ,2 , . - .  a sequence of non-negative real numbers. 

DEFINITION 1.3 (cf. definition 2.4 of [2]). We shall say that a measure- 

preserving action of G on X admits a multiplicity N approximation with speed 

f(n) if there exists a sequence of finite semi-partitions ~(n), n = 1 , 2 , . . .  such 

that 

(i) ~(n)--->e, as n--->~; and such that, for each n, there is a splitting 

~ ( n )  = E l ( n )  v ~2(n)  v - , ,  v ~N(n) 

into N mutually disjoint component semi-partitions 

~s(n)={C~j(n):i= l,...,qj(n)}, ]= I , . . . ,N,  

for each of which 

(ii) all of the elements are of the same finite measure, i.e. ~(Cs(n)) = 
/x(Clj(n))<oo, for all i = 1 , . . . , q j (n ) ,  and 

(iii) group elements gl~(n),'" ", gqj(,)-~.s(n) may be chosen so that 

qj(n)-I 
(1/(qj(n)/z (Cxj(n))))- E /z (gli (n).  C,j(n)AC,+,.j(n)) <= f(q~(n)). 

i=l 

The following defines a special type of multiplicity one approximation. 

DEFINITION 1.4 (cf. definition 1.1 of [6]). We shall say that a measure- 

preserving action of G on X admits a cyclic approximation with speed f (n)  if 

there exists a sequence of finite semi-partitions 

~(n) = {C~(n),--., Cq(,)(n)}, n = 1,2,. �9  
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such that 
(i) ~(n)---~e, as n---~oo, 

(ii) in each ~(n), all of the elements are of the same finite measure, i.e. 

/z(C,(n)) =/z(C~(n))  < ~ ,  for all i = 1 , . . . , q ( n ) ,  and 

(iii) for each n = 1, 2 , . . . ,  group elements gl(n), g2(n)," ", gqcn)(n) may be 

chosen so that 

q(n) 

(1/(q (n)/x (C,(n)))). E /x (g, (n) .  C, ( n ) i  C,§ =< f(q (n)), 
i ~ l  

where Cq(,)+~(n) is taken to denote Cl(n). 

REMARK 1.5. The Z-action generated by an irrational rotation of the circle 

admits cyclic approximations with arbitrary speed. In terms of definition 1.1 of 

[6], this need not be true of the irrational rotation itself. 

For Z-actions, apart from the dropping of the customary hypothesis that/~ be 

a probability measure, the novel feature of Definitions 1.3 and 1.4 is the free 

choice of group elements which condition (iii) of each of them allows. 

REMARK 1.6. Conditions (i) and (ii) of Definition 1.4 imply that 

lim q (n)~ (C,(n)) = ~ (X). 

If /z is finite, then the normalizing factor l/(q(n)/z(C,(n))) in condition (iii) 

could be replaced by 1//z (X) without affecting subsequent results. 

w Some spectral multiplicity theory 

If G is a type I group, then any continuous unitary representation II of G on a 

separable Hilbert space admits a canonical spectral decomposition 

y~ (.) FI - m (A). Adu(A), 

where 
(a) (~ denotes the standard Borel space of unitary equivalence classes of 

irreducible representations of G, 
(b) m is a measurable function on (~ with values in {oo; 1, 2,- .  �9 }, known as the 

spectral multiplicity function of the representation II, 
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(c) m (A). A denotes the direct sum of m (A) copies of the irreducible A, for all 

A E (~, and 

(d) t, is a tr-finite, Borel measure on (~, known as a spectral measure of II. 

Note that (*) determines the pair (v,m) uniquely up to equivalence of 

measures and almost everywhere equality of functions. The equivalence class of 

the measure u is called the maximal spectral type of the representation I1. 

For more details of the above spectral decomposition, see Dixmier [4] or 

Mackey [10]. 

When the terms spectral multiplicity, spectral type, etc., are applied to a 

measure (ix)-preserving group action, (g,x)---*g .x, g E G, x E X, they are 

understood to refer to the corresponding spectral properties of the unitary 

representation, l-I s, g ~ G, induced on L2(X, ix) as follows: 

( i i s y ) ( x ) = y ( g - l . x ) ,  f o r a l l y E L 2 ( X ,  i x ) a n d x E X .  

See Kirillov [7]. 

At this point, it is convenient to introduce the following notation: given a type 

I group G, then, for each k E {~; 1, 2 , - . .  }, t~k denotes the Borel subset of 0 

consisting of all elements A with dim A = k ; given a representation II defined on 

a space H, we shall denote by Z ( z )  the closed, If-cyclic subspace generated by a 

vector z in H. 

The following proposition was proved by Chacon [2] in the case of a single 

unitary operator (i.e. for G = Z). The main innovation in our extension of 

Chacon's proof to cover the case of a general type I group is Lemma 2.2, below. 

PROPOSITION 2.1. Let II be a continuous, unitary representation of a type I 

group G on a separable Hilbert space H. Fix a positive integer k. Suppose that I is 

any positive integer chosen so that m, the spectral multiplicity function of II, is 

greater than or equal to I on a non-null subset of Gk (with respect to the maximal 

spectral type of II). 
Then there exist l orthonormal vectors y,, �9 �9 yt in H such that 

dZ(ys, Z ( z ) )  >- l -  k, 
i=l 

for all z E H, where d denotes the distance induced from the norm on H. 

The following lemma may be seen to deal with the case when the maximal 

spectral type of II is concentrated at a single point. 
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LEMMA 2.2. Suppose that H = Ilk Q Ill, where Ilk and Hz are fixed Hilbert 

spaces of finite dimensions k and l respectively. Let {wl, w2,"  ", w,} be an 

orthonormal basis ]'or Ht, and choose arbitrary unit vectors v l , . . . ,  vt in Ilk. 

Then, whenever FI is a unitary representation of G on H of the form Z @ IdH,, 

with A ~ Cdk, one has 

I 

d2(vj @ w , , Z ( z ) )  >-_ l -  k, 
j = l  

for all z E H. 

PROOF. Choose an orthonormal basis {Ul," �9 ", u~} for Hk. The tensor product 

space H splits into the orthogonal direct sum of the k subspaces {ui Q w ; w E 

Ht}, i = 1 , . . . ,  k. Hence, each vector z in H has a unique decomposition as a 

s u m  

k 

z = ~  u ,@z, ,  w i thz ,~Hz ,  f o r i = l , - . - , k .  
i =1  

So, fixing an arbitrary vector z in H, one may write 

k 

llsz = ~ (Asu,) Q z,, for all g E G. 
i = l  

From this expression and the irreducibility of A, it follows that 

Z ( z )  = Ilk Qlin .  span {z l , ' '  ", zk}. 

Hence, the orthogonal projection with range Z ( z )  is just Idm Q P ,  where P 

denotes the projection from Ht onto the subspace spanned by z l , "  ", zk. 

Now, 
l 

Z d2( v, @w,,Z(z))= ~ [Iv, @w,-  v, QPw, I[ 2 
j = l  j = l  

= ~ [Iv, 112rr (IdH,- P)w, I[ 2 
j = l  

= trace (IdH, - P). 

Since the trace of ( I dH , -P )  is just the codimension in Hz of 

lin. span {zl," �9 ", zk}, and this codimension is at least l - k, the proof is complete. 

PROOF OF PROPOSITION 2.1. Let 

A ={A E Ok : m ( A ) -  -> l}. 
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Then a maximal spectral measure v may be chosen with 

~(A) = 1. 

Denote  by L~| u) the Hilbert space of all square-integrable functions 

y :A--+Hk | The inner product on this space is defined as follows: 

(yl, y2) = fA (y,(A), yz(A))u~| 

L m| u). for all y~,yz~ 2 
2 D e f n e  a unitary representation II'~, g E G, on Lm| u) as follows: 

( I I ; y ) ( h ) = ( h , |  forallyEL2nk| g E G ,  A E A .  

Noting that II' is just a version of f~  l �9 Adv(A), one sees from the definition of 

A that H contains a ILinvariant subspace H' ,  such that the restriction of II to H '  

is isomorphic to II'. 

Let 0 denote the orthogonal projection from H onto H' .  Then, for y ~ H ' ,  

z E H and T a finite linear combination of the elements of {H~ : g ~ G}, one has 

Ily - T~ I1~_-> I IO(y  - T ~ ) l r  

= II y - V O ~  II ~ 

_-> d~(y, Z(Oz)). 

Taking the infimum over all possible finite linear combinations T, it follows that 

if y E H ' ,  then d2(y,Z(z)) > - d2(y,Z(Oz)),  for all z in H. 

Thus, it will be sufficient to show that there exist l orthonormal vectors 

y~,..-,y~ in H '  with E~_~d2(y~,Z(z))>= I - k, for all z in H ' .  To  prove this is 

equivalent to proving the proposition in the special case when H = L~k| , u) 

and II = II'. 

Letting v~,...,v~ and w l , " . ,  w~ be as in Lemma 2.2, we choose as our 

orthonormal vectors in L~k| v) the constant functions y l , ' "  ", y~ defined by: 

yj( ,~)-=v, |  j = l , . . . , l ,  , ~ A .  

Now, let z be an arbitrary element of L2u~| v), and denote by Pz(z) the 

orthogonal projection onto Z(z) .  By a routine argument, it follows from the 

disjointness of the different representations A | Id,,  as A varies over A, that 

Pz(z) decomposes as follows: 

For all y E L~|  v), (Pz(~)" y)(A) = Pz(z(~))" y(A), v-almost everywhere 
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on A, where Pz<zt~,)> denotes the orthogonal projection from Hk @Ht onto the 

closed A @ Idn,-cyclic subspace generated by z(A). 

Hence, with the above choice of y l , ' "  ", yt, 

l l 

d2(Y, ,Z(z))  = ~ IlYs-Pz,z,Ysll = 
i ~ l  j = l  

i=1 

Since v is a probability measure on A, and, by Lemma 2.2, the integrand in the 

above expression is greater than or equal to l - k everywhere on A, one obtains 

! 

d2(y,,Z(z))>= l -  k, 

which is the desired result. 

REMARK 2.3. The inequality given by Proposition 2.1 is precise in the sense 

that, for the given choice of yl," �9 ", yt, there always exists an element z of H with 

EJ=~ d2(yj, Z ( z ) )  = max(l - k,0). 

REMARK 2.4. If m(A)~d im) t ,  v-a.e, on (~, then the conclusion of the 

proposition is vacuous. This is all that could be expected, since this condition is 

equivalent to cyclicity of the representation H. 

w Approximations and spectral properties 

The proof of the following theorem combines techniques of Chacon [2] and 

Stepin [13]. 

THEOREM 3.1. Suppose that a measure (l~ )-preserving Borel action, 

(g, x )---~ g �9 x, g E G, x E X, of a type I group, G, on a standard Borel space X 

admits a multiplicity N approximation with speed O/n, 0 <- 0 < 2. Then its spectral 

multiplicity function, m, satisfies the inequality 

m (3.) _-< (2N/(2 - 0)). dim A, 

for almost every A in G (with respect to the maximal spectral type of the G-action ). 
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PROOF. Fix a positive integer, n, and let 

~(n) = {Cq(n): i = 1 , . . . ,  q,(n);j = 1, . . . ,  N} 

and glj(n), i = 1 , . . . , q j ( n ) - l ,  j = 1 , . - . ,N ,  be as in Definition 1.3. 

For each j E {1,.. -, N}, define group elements 

f g,-l.j(n).g,-2.j(n)'..glj(n), for i = 2 , . . . , q j (n ) ,  
h,j(n) = [ e (the group identity), for i = 1, 

and consider the subset of Clj(n) defined as follows: 

qi(.) 
Aj(n) = I'-] hq(n)- ' -Cq(n).  

i = 1  

Clearly, hij(n). Aj(n)C C~j(n), for all i = 1 , . . . ,q j (n ) .  Furthermore, noting that 

whenever x ~ C~j(n)\Aj(n) there must exist a first i E {2, . . . ,  qj(n)} such that 

x ~ h,j(n)-'. Cq(n), we have, for each i = 1 , . . . ,q j (n) ,  

Ix(Cq(n)\hq(n). Aj(n))= Ix(C,j(n))- Ix(Aj(n)) 
qi(n)=l 
Z 
i = l  

Ix (hq(n )-' . Cij(n )\hi+,,j(n )-" C i + L ~ ( n ) )  

1 qj(n)--I 
(1) 5-'. 

i - l  

<= (�89 (Olqi(n)). (qj(n)Ix (C,i(n))) (by Definition 1.3) 

= (0/2)./x (Cq(n)). 

This inequality will be used to show that, with respect to the unitary 

representation I1 induced from the given group action, one has 

N 

(2) l i m s u p ~  dZ(y,Z(XAj(,)))<=(N - l +  (O/2))[ly ]] 2, for all y ~L2(X, Ix), 

where, in accordance with the notation of w for each j, Z(XAj(.~) denotes the 

ll-cyclic subspace of L2(X, Ix) generated by the characteristic function of the set 

Aj(n), and d denotes the distance induced from the norm on L2(X, Ix). 
To obtain (2), fix y, and, for each n, let 

y(n)  ~ q ~ '  ~' = a,j (n)X,~,,(-) 
j = l  i = l  
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be the projection of y onto the subspace of Lz(X,/x) spanned by {Xc,,(.): 
i = 1,...,qs(n); j = 1 , . . . ,N} .  Then 

d2(y (n), Z (X A,(.,)) --< f 2 

a,,,o, 

= ~ la,~(n)12~(Ck(n)) 
k = l  i = l  
k / j  

+ q~)laq(n)12tz(Cq(n)\h,s(n)'As(n)) 
i=1  

=< Y~ r a,~(n)f~.(C,~(n)) 
k = l  i = l  
k # i  

+ (0/2)- l a,j(n)l~lx (C,j(n)) 
i = l  

(by (1)). 

Summing over j, this gives 

N 

E d2(y(n), Z(XA,(,,))) <= (N - 1 + (o/2))lly(n)ll  ~. 
] = 1  

Inequality (2) now follows, because the hypothesis that ~(n)---~ e implies that 
y(n)---~y as n---~ oo. 

We are now in a position to use Proposition 2.1. Fix a positive integer k. Let us 

denote by rnk the essential supremum of the restriction to (~k of the spectral 

multiplicity function m. Choose an arbitrary positive integer l no greater than 

ink. Then, by 2.1, there exist unit vectors y l , ' "  ",yz in L~(X, Iz) such that 

2 d2(Y,Z(z)) >=l-k,  f o r a l l z E L 2 ( X , ~ ) .  
s = l  

Applying this inequality with z = XA, t.), and summing over j, gives 

! N 

~ d2(y,Z(xa,(,,,))>=N(l- k). 
s = l  j = l  

Inequality (2) now implies that 

l ( N -  1 + (0/2))_- > N(l - k ). 
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When 0 is less than 2, this is equivalent to: 

1 <- 2Nk/(2 - 0). 

Since l was defined to be an arbitrary positive integer less than or equal to ink, 

we conclude that 

mk<-2Nk/ (2-O) ,  f o r a l l k E { 1 , 2 , . . . } .  

This completes the proof. 

REMARK 3.2. When G is abelian, so that dim A = 1 for all A in t~, Theorem 

3.1 gives the uniform bound [ 2 N / ( 2 - 0 ) ]  on the spectral multiplicity of the 

G-action. If 0 is less than 2/(N + 1), this bound is equal to N, the best that could 

be expected using multiplicity N approximations. 

Chacon [2] obtained the bound N for the special case (see Remark 1.5) of a 

multiplicity N approximation, with speed O/n, 0 <= 0 < 2/(N + 1), of a measure- 

preserving automorphism of probability space. Stepin [13] showed that a 

measure-preserving automorphism of a probability space which admits a cyclic 

approximation with speed O/n, 0 < 2, must have spectral multiplicity uniformly 

less than or equal to [2 / (2-  0)]. 

REMARK 3.3. Returning to the general case of an action of a type I group, 

observe that if one is given a multiplicity N approximation with speed o(1/n), 

then the theorem implies that 

m (A) _-< N .  dim A, for almost all t~. 

This inequality may be interpreted as bounding by N the number of cyclic 

components needed to make up the unitary representation induced from the 

group action (see Remark 2.4). 

The next two theorems are straightforward generalizations of theorem 1 of [13] 
and theorem 2.1 of [6]. The reader may check that the proofs of these earlier 

results can be extended so as to cover our more general situation. 

THEOREM 3.4 [13]. Let there be given a measure (~ )-preserving action of a 

non-compact, locally compact, second countable, abelian group G on a standard 

Borel space X. Suppose that there exists a sequence of semi-partitions ~(n), 

n = 1 ,2 , . . . ,  and a sequence of group elements g(1), g (2 ) , . . ,  satisfying 

(i) , f ( n ) ~  e, as n ~ ,  
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(ii) limn_| = 0% and 

(iii) there exists a constant 0 < 1, 

c 

independent of n, such that, whenever 

(g(n) .  c a c )  <= o . (c ) .  

Then the maximal spectral type of the group action is singular with respect to the 

Haar measure on the dual group G. 

THEOREM 3.5 [6]. Suppose that a measure-preserving group action admits a 

cyclic approximation with speed O/n, 0 >- O. 

Then that action has a finite ergodic decomposition. I f  0 < 4, then the action is 

ergodic. In general, the number of ergodic components is no more than 

max (1, 0/2). 

REMARK 3.6. Unlike the other results of this paper, Theorem 3.5 applies to 

actions of arbitrary groups. 

REMARK 3.7. The hypotheses of Theorem 3.4 are satisfied if the group action 

admits a cyclic approximation with speed O/n, 0 < 0 < 1, provided that the group 

elements g,(n),.. . ,gqt,>(n), n = 1 ,2 , . . . ,  specified in Definition 1.4 may be 

chosen so that 

lina gq~., . gq~.)_,(n ) . . . g ,(n ) = oo. 

w Applications 

As an illustration of the general techniques developed in the previous sections, 

we have the following elementary example. 

EXAMPLE 4.1. Let 3', and 3'2 be rationally independent real numbers. Con- 

sider the Z2-action on the real line defined as follows: 

(k,, k2)" x = x + k,3'x + k23'2, for all (k,, k2) E Z 2, and x ~ R. 

This action preserves the Lebesgue measure, denoted /z. 

The rational independence of 3'1 and 3'2 implies that, if C and C '  are arbitrary 

sub-intervals of R of the same finite length, then, given any e > 0, arbitrarily 

large integers k~ and k2 may be found so that ~((kl ,  k2)" CAC')  is less than e. 

From this it is clear that the sequence of semi-partitions 
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~ ( n ) = { [ i / n , i + l / n ) : i = - n  z , - n 2 + l , . . . , n 2 } ,  n = l , 2 , . . .  

provides cyclic approximations of the given Z2-action with arbitrary speed. This 

sequence of semi-partitions also satisfies the conditions of Theorem 3.4. Hence, 

from the results of the previous section one may deduce that the given Z~-action 

is ergodic and has simple, singular spectrum. (Note that it is possible to obtain 

the spectral decomposition of this ZZ-action by direct means.) 

We now proceed to a study of the class of cylinder transformations, 

{T~.0 : c~,/3 E (0, 1)}, defined in the introduction. The space [0, 1) • R, on which 

each T~,~ acts, is taken to be equipped with the product, denoted /x, of the 

Lebesgue measures on [0, 1) and R respectively. 

For each x E R, 

and 

[x ] denotes the integer part of x, 

(x) = x - [x], the fractional part of x, 

((x)) = min ((x), 1 - (x)), the distance from x to the nearest integer. 

If I is a positive integer, then T~.~ acts on a point (x, t) in [0, 1) • R as follows: 

r~, .(x,  t) = (x + l~),  t + ~ Xto,.~((x + ion))-  I/3 . 

In order to estimate the vertical components of the translations brought about by 

iterates of T~,o, we introduce the sequence of "discrepancies" 

I - 1  

D,(o~) = sup ( 1 / l ) ~ x t a . ~ ) ( ( i a ) ) - ( b - a )  1 = 1 , 2 , . . - .  
0~ia < b ~ l  i ~ 0  

Note that, for each positive integer l, the vertical distance through which T~,~ 

shifts a point in [ 0 , 1 ) •  is never more than 2/Da(~t). The sequences of 

discrepancies, D~(a), l = 1, 2 , . . . ,  a irrational, have long been studied in connec- 

tion with the irregularity of distribution of the sequences ia, i = 1 , . . .  (see 

Kuipers and Niederreiter [9]). We shall have use of the well known result that, 

for any irrational t~, the sequence IDa(a), l - - 1 , 2 , ' . . ,  is unbounded. 

PROPOSITION 4.2. Suppose that ~t is an element of (0, 1) for which there exists a 

sequence of irreducible fractions p,/q,, n = 1 ,2 ,3 , . . . ,  such that, as n -.0% 
(i) q. ,,~ 0% 
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(ii) s.q 2.Ia - p./q.  I---+0, where s. = sup~,~q, lD,(a ) [or each n. 
Then, whenever/3 E (0, 1) satisfies 

(iii) lim inf ._ .max (((q./3)), (1/((q./3))) �9 s .q  ~.l e~ - p . / q .  I) = O, 

the trans[ormation T~.o has spectral multiplicity uni[ormly equal to one. 

PROOF. Note that in order that condition (iii) be satisfied, /3 must be 

irrational. Hence ((q,/3)) is non-zero for all n. Also, by going to a subsequence of 

the given sequence of irreducible fractions, we may assume that /3 satisfies 

lim ((q./3)) = 0, 

(iii)' 

lim(s,/((q./3 ))). q21 a - p.lq,  I = O. 

We shall show that, under these conditions, the (Z-action generated by the) 

transformation T,~n admits a multiplicity one approximation with speed o (l/n). 
Fix a positive integer n, and split the space [0, 1)• R into a disjoint union of 

the 2q. "columns" of the two "types" E~(n) and Fk(n), k = 0 , . . . , q , - 1 ,  

defined by 

and 

E~(n)=[k/q., k + (q"/3)] • R 
q,, / 

F k ( n ) = [ k  +(q,,~) k + l l x R .  
q,, ' q .  

The effect of the transformation T,./q.,~ on any of these_columns is a rigid 

transJation with horizontal component p./q. (mod 1) and vertical component 

either 1 - / 3  or -/3,  according to whether the column in question lies to the left 

or right, respectively, of the vertical line 

L = {(x, t ) ~  [0, 0 •  R: x =/3}. 

Note that each column lies entirely to one side or other of L. Focussing on the 

horizontal component of this translation, we see that for each k E {0, �9 �9 q,, - 1}, 

k Tp./q.,o Ek ( n ) = E k .p.(moaq.)(n) 

and 

k T,./q.,~Fk (n ) = Fk+,.(~odq.>(n ). 



Vol. 33, 1 9 7 9  SPECTRAL PROPERTIES OF GROUP ACTIONS 23 

Thus, the irreducibility of the fraction p , / q ,  implies that, as a permutation of 

either {E0(n) , ' '  ", E q - l ( n ) }  or {F0(n), . . . ,  Fq_,(n)}, T~./q..~ is cyclic. Hence, to 

determine the net translation of a column under q, iterations of Tj,.iq,,.~, it is 
necessary only to count the number of columns of the same type lying on either 

side of L. The columns to the left of L are E o ( n ) , . . . , E t q . o  j and 
F o ( n ) , . . . ,  Ftq.m-~(n). Upon making the calculations 

and 

([q./3 ] + 1)(1 - / 3 )  - (q .  - ([q,/3 ] + 1))/3 = 1 - (q./3) 

[q./3] (1 - / 3 ) -  (q, - [q,/3])/3 = - (q,/3), 

qn we conclude that Te.lq.,t3 translates each Ek(n), k = 0 , . . . , q . - 1 ,  vertically 

upwards by 1 -  (q,/3) units, whereas each Fk(n ) ,  k = 0 , . . . ,  q,  - 1, is translated 

vertically downwards by (q,/3) units. 

The above observations allow us to u s e  Te./q..t3 to define our n-th approximat- 
ing semi-partition, 

~ ( n ) =  { C i ( n ) : i  = 1, . - . ,6r ,q.},  

by choosing 

C~(n) = T '-lp.lq.,~ C~(n),  for each i E {1,...., 6r.q.},  

with r. = [(s. + 1)/((q./3))] and 

{(x, t) E Eo(n) : - 3r. ((q~/3)) < t < ( - 3r. + 1)((q./3))}, 

i f  ( ( q . / 3 ) )  = 1 - ( q . / 3 ) ,  

C 1 ( n )  = 

{(x, t) E Fo(n) : (3r. - 1)((q43)) =< t < 3r, ((q,/3))}, 

if ((q,/3)) = (q,,/3). 

Each element of ~(n) is a rectangle of base ( 1 -  (q,/3))/q, ,  filling a horizontal 

strip of depth ((q,/3)) across the column in which it lies. In the case when 

( (q , f l ) )  = 1 - (q . f l )  (respectively (q,/3)), the rectangles C l ( ? l ) , . .  -, Cq, (n) lie, one 

in each of the columns E o ( n ) , "  ",Eq.-l(n) (respectively F o ( n ) , . . . , F q _ l ( n ) ) ,  

forming a pattern in which no element is vertically displaced with respect to 

C l ( n )  by more than 2s, units (see the remarks accompanying the definition of 

the sequence of discrepancies). The other elements of ~(n) may be obtained by 

taking 6r, - 1 successive vertical shifts of this basic pattern, upward (respectively 

downward) by ((q,/3)) units. This implies that the elements of ~:(n) are indeed 

disjoint, and by the choice of r,, that 
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(,) U C D  
C~(n )  

qn -- 1 ) 
Ek(n) 

if ((qn[3)) = 1 - (q.[3), 

( q - I  ) 
O Fk(n)  n ( [ o , 1 ) x [ - s ~ , s . ) ) ,  
k=O 

if ((qd3)) = (q,fl). 

Note that, for all Borel subsets A of [0, 1)x R with/z ( A ) <  oo, the following 

hold: 

and 

((" ) )  lim /z U Ek(n)  A A  = ~ ( A )  
(qn~ 0 )-'~" 1 k~O 

((" ) )  lim ~t U Fk(n)  N A  = ~ ( A ) .  
(q~/3)-~0 k ~0 

Since sn --* ~, and the dimensions of the rectangles in ~:(n) tend uniformly to zero 

as n-->oo, we can thus conclude from (*) that ~(n)--*e as n--~oo. 

Furthermore, 

6rnqn--1 
(1/(6r~q.tz(CO))" ~_~ I~(T~.~C,(n)AC,.I(n)) 

i=l 

= (6r, q, - 1). 21o~ - p, /q .  I ((q./3)) 
6r, q , .  ((1 - ((q,/3)))/q,) ((q.[3)) 

= (1/6r.q,) .  (12r~q, - 2)q, l a - p,/q~ I 
(1  - ((q.[3))) 

= o (1/6r,q,), 

by (iii)' and the choice of r,, n = 1, 2 , - - - .  

Hence, the semi-partitions ~(n), n = 1, 2 , . . . ,  define a multiplicity one approx- 

imation of T,,,~ with speed o(1/n) .  It only remains to apply Theorem 3.1. 

Under the conditions of Proposition 4.2, the transformation T~a must have 

singular spectral type. This follows from: 

PROPOSITION 4.3. Suppose that a and [3 are irrational elements of (0, 1) for 

which there exists a sequence of irreducible fractions p,/qn, n = 1, 2 , . . . ,  with 
( i )  q. fl oo, as n-~oo, 
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(ii) for all n, 2q2.] a - p./q.  [ =< 0 < 1, where 0 is some constant, independent 

of n, 
(iii) lim inf . . . .  ((q.fl }) = O. 
Then the cylinder transformation T.,, has singular spectral type. 

PROOF. Choose a positive constant,  a, with 0 +2[a < 1. By going to a 

subsequence of the given sequence of irreducible fractions, we may assume that  

((q.fl)} ~ 0 as n ~ ~, 

and that there exists a constant  0 ' <  1 with 

(1) 0 + (2/a) + 2{(q,fl )) =< 0', for each n. 

Consider an arbitrary rectangle in [0, 1)• R of the form 

C = [k/q., (k + 1)/q.) • [t, t + a {(q./3))), 

with k E { O , . . . , q . - l } ,  t ~ R .  

Let C' be the subrectangle defined by: 

t [k/q., (k + (q.fl))/q.) • It, t + a((q.[3))), 
if ((q./3)) = 1 - (q.fl), 

C r =  

[(k + (qJ3})/q., (k + 1)/q.) x It, t + a ((q.fl}}), 

if ((q.fl }} = (q.fl }. 
Note that 

(2) IZ (Cz~C') = {(q,fl ))/~ (C). 

qn t From the proof of Proposit ion 4.2, it is clear the Tp./q.,~C is just a vertical 

translate of C '  by +-((q.fl}} units. Hence,  

(3) Ix (T~/q.,~C'AC') = (21a )~ (C'). 

NOW, 

qn t qn ! tz ( T .,~C A T p.I,.,~C ) < 

(4) 

q n  - 1 

Z qn ~i i t qn - i - 1  i - - I  ~' tz (T.,o T~nlq.,oC ~T.,~ Tp.lq.,oC ) 
i ~ 0  

qn- I  

�9 . T i K-, c~ ~ ( T.,~ T'p.lq.,~C' A T p.lq.,~ p.,/q.,~',--- j 

q . .  21 a - p./q. [a ((q.fl)) 

0~ (C), by condition (ii). 
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Here, we have used the fact that under any iterate of Tp.~q..~, the rectangle C'  is 

translated to another rectangle of the same type. This is apparent from the proof 

of Proposition 4.2. 

Together, (1), (2), (3) and (4) imply that, for any rectangle C of the assumed 

type, 

tz (Tqo".t3CAC) <= O'tz (C). 

Since /3 is irrational, ({q,/3)) is never zero, and the proof of the proposition 

may be completed by applying Theorem 3.4 to the sequence of partitions defined 

as follows: 

~(n) = {[k/q., (k + 1)/q,) x [la((q,~)), (1 + 1)a((q,/3))): k = 0 , ' . . ,  q, - 1, l E Z}, 

for all n = 1 , 2 , - . . .  

Now, consider the case when the parameter/3 is rational, say equal to c/d in 

lowest terms. Then, for all a in (0, 1), any vertical translate of [0, 1) x d- '  �9 Z is a 

T~.o-invariant subset of [0, 1)x R. Thus, we are led to define a new measure- 

preserving automorphism, denoted S ,,c/n, by taking the restriction of To.c/d to the 

space [0, 1)x d - ' . Z  (equipped with the obvious product of Lebesgue and 

counting measures). The class of transformations {S..c/d: a, c /d  E (0, 1)} is of 

interest in that it provides examples of approximations of all finite multiplicities: 

PROPOSITION 4.4. Let c /d  be an irreducible fraction in (0, 1). Suppose that 

a E (0, 1) is such that there exists a sequence of irreducible fractions p,/q., 

n = 1, 2,. �9 satisfying 

(i) no c h is a multiple of d, 

(ii) q .  /~ ~ a s  n - - *  ~, 

and 

(iii) s,q,2,] a - p . / q .  I---~0, as n ~ ,  where, as before, 

s, = sup ID,(~), foreach n. 
l<=l<~qM 

Then the transformation S~.c/d admits a multiplicity d approximation with speed 

o(1/n)  and, hence, has spectral multiplicity less than or equal to d. 

PROOF. Put b, = d(q,,c/d). Then, by (i), b, belongs to { 1 , 2 , . . . , d  - 1}, for 

each n = 1 , 2 , . - . .  

From the proof of Proposition 4.2 it is apparent that the columns, defined this 

time by 
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E~(n) = [k/q,,  k /q ,  + b , / d q . ) x  d - ' .  Z 

and 

Fk(n) = [k /q ,  + b , /dq , , (k  + a)/q.) x d- '  .Z, 

for k E {0, . . . ,  q . -  1}, have the following properties with respect to the re- 

stricted transformation Sp,/q.,c/~: 

(a) each column is rigidly translated by S,./q,.c/~ onto another column of the 

same type, 

(b) as a permutation of either {Eo(n),...,Eq._,(n)} or {Fo(n),...,Fq,_,(n)}, 

S~.lq.,c/d is cyclic, 
qn (c) under Sp./q,,cla, each of the columns Eo(n ) , . . . ,  Eq_~(n) moves vertically 

upwards by 1 - (q ,c /d)  units (d - b, "levels"), and 

(d) under S~"~q.,c/d, each of the columns F o ( n ) , . . . , F , _ , ( n )  is translated 

vertically downwards by (q ,c /d)  units (b, "levels"). 

Note that by a level of a column we mean one of the doubly infinite stack of 

intervals of which it is composed. 

These properties lead us to choose our sequence of approximating semiparti- 

tions as follows: 

For each n = 1 ,2 , . . . ,  we put 

where we define 

with 

and 

C,~(n) = { 

~(n ) = {C,i(n ) : i = 1, . . ., 6r,q.; j = 1 , . . . ,  d}, 

C,,(n) '-' = Sp.lq.,~l~C,j(n), for a l l / a n d ] ,  

r. = d i s .  + 1] 

[ O , b , / d q , ) z { ( - 3 r , + j ) / d } ,  for j = l , . . . , d - b . ,  

[b , /dq . ,1 /q . ) x{ (3r ,  + j - d ) / d } ,  for j = d - b ,  + l , . . . , d .  

The intervals C~,(n),. ..,  Cl.d-b~ (respectively Cl,d-b.+,(n),'" ", C~d(n)) 

have been chosen to be successive levels of the column Eo(n) (respectively 

Fo(n)). This implies, using (a) and (b) above, that ~(n) admits the following 

subdivision by columns: 

For each k E {1,. �9 .,q,}, whenever i ~ {k + lq, : l = 0 , . . . , 6 r , -  1}, the ele- 
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ments C,. ,(n), . . . ,  C.n-b.(n) (respectively C,,~_b.§ C~.~(n)) are successive 

levels of the column k-1 k-t Sp./q..c/aEo(n) (respectively Sp./,..c/dFo(n)). Note that each of 

the columns Eo(n) , . . . ,  Eq_~(n) (respectively F0(n) , . ' . ,  Fq~ is of the form 
k - I  Sp./q..c/dFo(n)), for some k E {1, . . . ,  q,}. Sp,/q..c/dEo(n) (respectively ~-' 

Now, for fixed k E {1 , ' . . ,  q,}, property (c) (respectively (d)), above, implies 

that if i E { k  +lq, : l = 0 , - . . , 6 r , - 2 } ,  then the intervals C,+q..,(n), C,.,.~(n), 
�9 " ", C,q.,d-b.(n) (respectively C,+q..d-b.+~(n), "" ", C,+q..~(n)) occupy the next 

(d - b,,)-tuple of successive levels of S~/q..c/aEo(n) above (respectively the next 

b-tuple of successive levels of S~/q..~/dFe(n) below) that occupied by 

C~.~(n),..., C~,u-b.(n) (respectively C~.d-b.+,(n), "" ", C,,d(n)). Thus, within the 

columns Eo(n), " ", Eq_~(n) (respectively F0(n), --., Fq _~(n)), the semi-partition 

~(n) contains stacks of 6r.(d - b,) (respectively 6r, b,) consecutive levels. The 

lowermost (respectively uppermost) levels in these stacks are, modulo a reorder- 

ing, C~,,(n), C2.,(n), . . . ,  C,.,~(n) (respectively C~.~(n), C2.d(n), "" ", Cq.,d(n)), 

none of which, by the definition of s,, is more than 2s, units vertically displaced 

from the 3r, th level below (respectively above) the horizontal axis. Since, by the 

definition of r,, a vertical displacement of 2s, units spans no more than 2r, levels, 

we see that 

{ (x , ] /d ) :xE[O,  1 ) , j E { - r , , - r , + l , . . . , r , } } C  I..) C, foral ln .  
C ~ ( n )  

Together with the uniform convergence to zero of the lengths of the elements 
of s this inclusion implies that s as n- - )~ .  

The rest of the proof is exactly as for 4.2. The details are left to the reader. 

The following proposition may be proved in the same way as Proposition 4.3. 

PROPOSITION 4.5. Let a be an element of (0, 1) for which there exists a 
sequence of irreducible fractions p,/q,, n = 1, 2,. �9 satisfying 

(i) each q, is a multiple of  d, 
(ii) q. ,,~ ~, as n -~ oo, 

(iii) there exists a constant 0 < 1 with 

2 q ~ l a - p , / q . l < - o ,  foralln. 

Then the transformation S~,c/a has singular spectral type. 

REMARK 4.6. The conditions on the parameter a hypothesized in Proposi- 

tions 4.2--4.5, respectively, are satisfied on residual subsets of the parameter 

space (0, 1). In the cases of 4.3 and 4.5, these subsets have Lebesgue measure 
o n e .  



Vol. 33, 1 9 7 9  SPECTRAL PROPERTIES OF GROUP ACTIONS 29 

It may be shown that, for any a which satisfies the conditions of either 4.2 or 

4.3, the corresponding condition on the parameter [3 is satisfied by a residual, 

measure-one subset of values in (0,1). 

REMARK 4.7. From the proofs of Propositions 4.2 and 4.4, the transforma- 

tions Tp,/q,,o and Sp,/q.,c/~ used in approximating T~,~ and S~,c/d, respectively, may 

be seen to have infinite Lebesgue spectrum (in fact, these transformations are 

diss ipat ive--each have a wandering set whose transforms cover the whole 

space). The question arises whether either of the transformations T~,~ or S~.c/a 

may have Lebesgue spectral type (with finite multiplicity?) for some irrational 

value of a ? 

REMARK 4.8. It follows from [11] that the conditions of Proposition 4.4 are 

sufficient for ergodicity of S~.c/~. 

The following proposition summarizes a number of spectral observations 

which do not depend upon the method of approximations. Note that the 

maximal spectral type and spectral multiplicity functions of any measure- 

preserving transformation are defined on the circle group K = {z E C :l z I = 1}. 

PROPOSITION 4.9. Let a and fl be arbitrary elements of (0, 1). Then 
(a) the transformation T~.~ has maximal spectral type and spectral multiplicity 

function both invariant under each of the following transformations of the circle 

group: 
(i) z ~ ~., z ~ K, the reflection in the horizontal axis, 
(ii) z ~ e z=~ �9 z, z ~ K, the rotation through the angle 27ra, 
(iii) z--~e2='~.z, z E K, the rotation through the angle 27r[3; 

(b) when fl is rational, the same is true of the maximal spectral type and spectral 

multiplicity function of the transformation So.o; 
(c) in the special case when [3 equals �89 the spectral multiplicity function of S,.o is 

even almost everywhere on K. 

PROOF. For each t E R, let V,.~,, denote the unitary operator defined as 

follows on L2[O, 1): 

(V,,~.,y)(x) = exp(-2zrit(Xto.~(x ) -  fl)). y(x + a (mod 1)), 

for all y E L2[0, 1) and x ~ [0, 1). 
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By conjugating with the Fourier transform in the R-coordinate, it is not 

difficult to show that the unitary operator induced on L2([0, 1)• R) by T,~.~ is 
unitarily equivalent to f~ V~.~,,dt, the direct integral operator on the space 

f~L2[O, 1)dt which acts on each norm-square-integrable vector field 

t ~ y, : R--~ L2[0, 1) as follows: 

( ( f ~  V~,t~,dt).y)= V~,~.,y,, forall t ~ R. 

Similarly, if c/d is an irreducible fraction in (0, 1), then the unitary operator 

induced on L2([0, 1) x d-lZ) by S~,c/d may be shown to be unitarily equivalent to 

f lo.d) V~,c/d,,dt. 
Now, check that the identities 

(i) W~;V~.o,,W~-- V*,~,_, (=  V*.~/a.a-,, if/3 = c/d), 
(ii) W*V~,~,,W2= e2"~V~.~.,, and 
(iii) V~.~.,-1 = e2~'~V~.~,, 

hold for all possible values of the parameters, where W~ and W2 are the unitary 

operators on L2[0, 1) defined by setting 

W~y(x)= y (a  + / 3 -  x (mod 1)) 
and 

W2y(x)=e2~'~y(x), for all y ~ L2[0, 1) and x E [0, 1). 

The identities (i), (ii), and (iii), applied to the stated direct integral decomposi- 
tions of the unitary operators induced from T~.~ and S,,,o, imply that each of these 
operators is unitarily equivalent to (i) its adjoint, (ii) itself multiplied by e 2"', and 
(iii) itself multiplied by e 2'~, respectively. These unitary equivalences prove 
parts (a) and (b) of the statement of the proposition. 

Now, note that 

W* VoL, W3 = V~,~,2-,, for all c~ E (0, 1), t E R, 

where W3 is the unitary operator defined on L:[0, 1) as follows: 

Wsy(x)=y(x+~_(modl)),  for all y E L2[0, 1) and x E [0, 1). 

It follows from this identity that the direct integral decomposition of the 

unitary operator induced from So.~ splits as the direct sum of two isomorphic 

parts: fio.J)~ V,.~.,dt~ and ~ V~,~.,dt. fll,2) This proves (c). 

COROLLARY 4.10. If a satisfies the conditions of Proposition 4.4 with c/d = I, 
then the spectral multiplicity of the transformation S,~,~ is uniformly equal to two. 
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PROBLEM 4.11. IS it possible to conclude, in general, that under the condi- 
tions of Proposition 4.4, the spectral multiplicity function of S~.c/d is uniformly 

equal to d? 

REMARK 4.12. From the direct integral decomposition used in the proof of 

4.9, one may deduce that if To,~ has simple singular spectrum, in particular if a 
and/3 satisfy the conditions of Proposition 4.2, then the following holds: there 

exists a null subset N of R such that for each t E R\N, the operator V~.~., has 
simple, singular spectrum, disjoint from that of any other Vo.~.,, with t' E R\N. 
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