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APPROXIMATIONS AND THE SPECTRAL
PROPERTIES OF MEASURE-PRESERVING
GROUP ACTIONS

BY
G. W.RILEY

ABSTRACT

This paper presents some extensions and applications of the method of
approximations of ergodic theory (see [6]). Two notions of approximation are
defined which are applicable to arbitrary o-finite-measure-preserving group
actions (see §1). Building upon results of [2], [13] and {6], the speeds of such
approximations are related to the questions of spectral multiplicity, spectral
type and ergodicity (see §3). For the result on spectral multiplicity, there is first
established a general result concerning the spectral decomposition of unitary
representations (see §2). The last section is devoted to applications — chiefly to
certain classes of cylinder transformations which arise in connection with
irregularity of distribution (see [12]). These transformations provide examples
(on infinite measure spaces) of approximations of all finite multiplicities. The
method of approximations is shown to be a natural tool for the study of their
spectral properties.

Introduction

In their fundamental paper [6], Katok and Stepin introduced the ‘“‘method of
approximations” into ergodic theory. In so doing they showed that many
properties of a measure-preserving automorphism of a probability space may be
deduced from the existence of certain types of approximation by periodic
transformations.

We shall present some extensions and applications of those aspects of the
method of approximations which deal with the determination of spectral
properties. Our results build upon the developments which have already been
achieved by Chacon [2] and Stepin [13].

We begin, in the next section, by defining two notions of approximation, each
of which is applicable to arbitrary measure-preserving group actions.
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Our main general result, Theorem 3.1, relates the spectral multiplicity of a
measure-preserving action of a type I group to the speed with which it admits
finite multiplicity approximations. The key to the proof of this theorem is
Proposition 2.1, a result in the spectral decomposition theory of unitary group
representations.

Turning to the link between cyclic approximations and the questions of
singularity of spectral type and ergodicity, we have included the statements of
two theorems, 3.4 and 3.5, which place in our more general context earlier
results of [13] and [6].

The final section is devoted to applications, including an investigation of the
spectral properties of the class of cylinder transformations {T.z : o, B € (0, 1)},
defined on [0,1) xR as follows:

T.s(x,t)=(x + a (mod 1), t + xp0.8(x)— B), forall (x,#)€[0,1) X R.

These transformations, which arise naturally in connection with the irregularity
of distribution of the sequences na, n =0,1,2,---, « irrational, have been
studied by a number of authors [1, 3, 8, 11, 12]. However, it seems that, until
now, only the question of their ergodicity has received attention. In §4,
conditions on a and B are given under which the transformation T, ; has simple,
singular spectrum. There also appears a class of cylinder transformations each of
which has spectral multiplicity uniformly equal to two (see Corollary 4.10).

This work forms part of the author’s Ph.D. thesis at the University of
Warwick. Much gratitude is extended to the author’s research supervisor, Dr. K.
Schmidt, for his boundless help and encouragement. The author also wishes to
thank the University of Western Australia for their financial support in the form
of a Hackett Studentship.

§1. Finite multiplicity and cyclic approximations
Let X be a standard Borel space equipped with a o-finite measure u.

DeriNtTiON 1.1 (cf. del Junco [5]). (2) A semi-partition (of X) is a countable
collection of pairwise-disjoint, non-null, measurable subsets of X.

(b) A partition (of X) is a semi-partition whose elements cover all of X.

(c) Two semi-partitions ¢ and £’ shall be described as disjoint if (U e, C) and
(Uces C') are disjoint subsets of X. In this case, ¢ v &' shall denote the
semi-partition which contains all the elements of both ¢ and &'
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DEerFNITION 1.2. A sequence of semi-partitions £(n), n =1,2,--- is said to
converge to the unit partition, denoted ¢(n)— ¢, if, whenever A is a measurable
subset of X of finite measure, then

lim i (ABA(E(m) =0,

for some choice of successive approximations to A by unions, A {(£(n)), of the
elements of é(n), n =1,2,---.

Let there be given a measure (u)-preserving, Borel action, (g, x)— g - x,
g € G, x € X, of a locally compact second countable group G on the space X.

In the definitions that follow, N denotes a positive integer and f(n),
n=1,2,--- a sequence of non-negative real numbers.

DerINTION 1.3 (cf. definition 2.4 of [2]). We shall say that a measure-
preserving action of G on X admits a multiplicity N approximation with speed
f(n) if there exists a sequence of finite semi-partitions £(n), n =1,2,--- such
that

(i) é(n)— ¢, as n — »; and such that, for each n, there is a splitting

£(n)=&(n) v &n)v---vién(n)

into N mutually disjoint component semi-partitions

gf(")={cii(n):i21"”’qi(n)}’ j=1-- N,

for each of which

(ii) all of the elements are of the same finite measure, i.e. u(Cyi(n))=
w(Cij(n)) <o, foralli=1,--- g;(n), and

(iii) group elements gi;(n)," -, g4m-1;(n) may be chosen so that

q;(n)-1

(1/(qi (n)p (Cy(n))))- 2:1 p(gi (n)- Gy (n)AC.1;(n)) = f(gi(n)).
The following defines a special type of multiplicity one approximation.

DEerNTION 1.4 (cf. definition 1.1 of [6]). We shall say that a measure-
preserving action of G on X admits a cyclic approximation with speed f(n) if
there exists a sequence of finite semi-partitions

g(n)z{cl(n)"'"Cq(n)(n)}: n=12---,
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such that

() £(n)—e, as n—>c,

(ii) in each £(n), all of the elements are of the same finite measure, i.e.
w(G(n))=p(Ci(n)) <o, forall i =1,---,q(n), and

(iii) for each n=1,2,---, group elements g,(n), g:(n), -, gm(n) may be
chosen so that

q(n)

(1/(g(n)u(Ci(n)))- Zl p(gi(n)- C(n)AC.(n)) = f(q(n)),

where C,(ny:(n) is taken to denote Ci(n).

RemMark 1.5. The Z-action generated by an irrational rotation of the circle
admits cyclic approximations with arbitrary speed. In terms of definition 1.1 of
[6], this need not be true of the irrational rotation itself.

For Z-actions, apart from the dropping of the customary hypothesis that x be
a probability measure, the novel feature of Definitions 1.3 and 1.4 is the free
choice of group elements which condition (iii) of each of them allows.

Remark 1.6. Conditions (i) and (ii) of Definition 1.4 imply that

lim g (n)u(Ci(n)) = p(X).

If p is finite, then the normalizing factor 1/(q(n)u (Ci(n))) in condition (iii)
could be replaced by 1/u (X) without affecting subsequent results.

§2. Some spectral multiplicity theory

If G is a type I group, then any continuous unitary representation II of G on a
separable Hilbert space admits a canonical spectral decomposition

(<]
*) = [ m)-advin),

where

(a) G denotes the standard Borel space of unitary equivalence classes of
irreducible representations of G,

(b) m is a measurable function on G with values in {®; 1,2, - - -}, known as the
spectral multiplicity function of the representation II,
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(c) m(A)- A denotes the direct sum of m (A) copies of the irreducible A, for all
AE G, and

(d) v isa o-finite, Borel measure on G, known as a spectral measure of II.

Note that (*) determines the pair (v, m) uniquely up to equivalence of
measures and almost everywhere equality of functions. The equivalence class of
the measure » is called the maximal spectral type of the representation II.

For more details of the above spectral decomposition, see Dixmier [4] or
Mackey [10].

When the terms spectral multiplicity, spectral type, etc., are applied to a
measure (u )-preserving group action, (g, x)—>g-x, § € G, x € X, they are
understood to refer to the corresponding spectral properties of the unitary
representation, Il,, g € G, induced on L*(X, i) as follows:

(Mey)(x)=y(g'-x), forally € L¥X,u)andx € X.

See Kirillov [7].

At this point, it is convenient to introduce the following notation: given a type
I group G, then, for each k € {=;1,2,---}, G, denotes the Borel subset of G
consisting of all elements A with dim A = k; given a representation II defined on
a space H, we shall denote by Z(z) the closed, II-cyclic subspace generated by a
vector z in H.

The following proposition was proved by Chacon [2] in the case of a single
unitary operator (i.e. for G = Z). The main innovation in our extension of
Chacon’s proof to cover the case of a general type I group is Lemma 2.2, below.

ProrosiTiON 2.1. Let 1 be a continuous, unitary representation of a type I
group G on a separable Hilbert space H. Fix a positive integer k. Suppose that l is
any positive integer chosen so that m, the spectral multiplicity function of II, is
greater than or equal to | on a non-null subset of G, (with respect to the maximal
spectral type of II).

Then there exist | orthonormal vectors y.,- -+, y: in H such that

1
2 40, Z(2)z1-k,
i=1
for all z € H, where d denotes the distance induced from the norm on H.

The following lemma may be seen to deal with the case when the maximal
spectral type of II is concentrated at a single point.



14 G. W. RILEY Israel J. Math.

Lemma 2.2. Suppose that H = H, Q H, where H, and H, are fixed Hilbert
spaces of finite dimensions k and | respectively. Let {wi, ws, -, w} be an
orthonormal basis for H, and choose arbitrary unit vectors v, - -, v in Hy.

Then, whenever 11 is a unitary representation of G on H of the form A @ Idg,,
with A € G, one has

i
Z (v, @w, Z(z))z -k,
for all z € H.

Proor. Choose an orthonormal basis {u,, - - -, u. } for H,. The tensor product
space H splits into the orthogonal direct sum of the k subspaces {u; @ w;w €
H}, i=1,.-- k. Hence, each vector z in H has a unique decomposition as a
sum

k
z=2 u Q z, withz, € H, fori=1,--- k.
i=1
So, fixing an arbitrary vector z in H, one may write
k
Iz =2 (\:)®z, forallg€q.
i=1

From this expression and the irreducibility of A, it follows that
Z(z)= H, ®lin.span{z,, - -, z}.

Hence, the orthogonal projection with range Z(z) is just Idy, & P, where P
denotes the projection from H, onto the subspace spanned by zy,- -, z..
Now,

I_le dZ(D,' ® W,',Z(Z)) =j§=l:1 ”1),. Qw; — v @ Pw; Hz
= 2, o Pl du, - Pyw; P

= trace(Idy, — P).

Since the trace of (Idy,—P) is just the codimension in H; of
lin. span{z,, - - -, z }, and this codimension is at least [ — k, the proof is complete.

Proor ofr ProrosiTION 2.1. Let

A={AeG..m)z 1}



Vol. 33, 1979 SPECTRAL PROPERTIES OF GROUP ACTIONS 15

Then a maximal spectral measure v may be chosen with
v(A)=1.

Denote by L3, su,(A, v) the Hilbert space of all square-integrable functions
y :A— H, Q H, The inner product on this space is defined as follows:

Gy = [, v Dy (1),

for all y,, y.€ Li,eu(A, v).
Define a unitary representation I}, g € G, on L, gu(A, v) as follows:

(M) (M) = (A @Ids,) - y (1), forally € L}, ou(A,v), g€ G, AEA.

Noting that IT' is just a version of [$1- Adv(A), one sees from the definition of
A that H contains a H-invariant subspace H', such that the restriction of I to H’
is isomorphic to IT".

Let Q denote the orthogonal projection from H onto H'. Then, for y € H',
z € H and T afinite linear combination of the elements of {II, : g € G}, one has

ly = Tz[PzfQ(y - T2)F
=[y - TOz|?
= d*(y, Z(Qz)).

Taking the infimum over all possible finite linear combinations T, it follows that
if y € H', then d*(y, Z(z))= d*(y, Z(Qz)), for all z in H.

Thus, it will be sufficient to show that there exist ! orthonormal vectors
Yi, ooy in H' with 2,_,d*(y;, Z(z))= | — k, for all z in H'. To prove this is
equivalent to proving the proposition in the special case when H = L, ou,(A, v)
and I[I=1I".

Letting vy,---, v and wy, -+, w, be as in Lemma 2.2, we choose as our
orthonormal vectors in L, gu (A, v) the constant functions y,, - - -, y, defined by:

yM)=v,Q®Qw, j=1,---I, AEA.

Now, let z be an arbitrary element of L%, gm,(A, v), and denote by Pz, the
orthogonal projection onto Z(z). By a routine argument, it follows from the
disjointness of the different representations A @ Ids, as A varies over A, that
P, decomposes as follows:

For all y € LY, on(A, v), (Pz) y)(X) = Pzeay - y(A), v-almost everywhere
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on A, where Pz, denotes the orthogonal projection from H, & H, onto the
closed A ® Idy,-cyclic subspace generated by z(A).
Hence, with the above choice of y,, -, y,

,2; dz()’i, Z(z))= 2:1 || Yi = Pzeyy; ||2
=3 (] 1= PrcomFarn))
[ 3 a2 @w, ZEaWdr ).

A j=1

Since v is a probability measure on A, and, by Lemma 2.2, the integrand in the
above expression is greater than or equal to | — k everywhere on A, one obtains

; d*(y, Z(z))z 1 - k,

which is the desired result.

RemMARK 2.3. The inequality given by Proposition 2.1 is precise in the sense
that, for the given choice of y,, - - -, y, there always exists an element z of H with
i-1d*(y; Z(2)) = max (I ~ k,0).

ReMARK 2.4. If m(A)=dimA, v-ae. on G, then the conclusion of the
proposition is vacuous. This is all that could be expected, since this condition is
equivalent to cyclicity of the representation II.

§3. Approximations and spectral properties

The proof of the following theorem combines techniques of Chacon [2] and
Stepin [13].

THeOREM 3.1. Suppose that a measure (u)-preserving Borel action,
(& x)— g x, g €EG, x € X, of a type I group, G, on a standard Borel space X
admits a multiplicity N approximation with speed 6 /n, 0 = 6 <2. Then its spectral
multiplicity function, m, satisfies the inequality

m(A) =< (2N/(2- 8))-dimA,

for almost every X in G (with respect to the maximal spectral type of the G -action).
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Proor. Fix a positive integer, n, and let
‘f(n) = {C.-,(n): i=1,- .,qj(n);j = 1, e, N}

and g;(n), i=1,---,¢;(n)—1,j=1,--- N, be as in Definition 1.3.
For each j €{1,- -, N}, define group elements

gi—l,j(n) ' gi—Z,i(n) Tt gli(n)a fori= 23 Y Qi(”),
hi(n) =
e (the group identity), for i =1,

and consider the subset of Cy;(n) defined as follows:

q;(n)

Aj(n)= ﬂ hi(n)™ - Cy(n).

Clearly, h;(n)- A;(n)CGC;(n), for all i =1, - -, g;(n). Furthermore, noting that
whenever x € Cy;(n)\A;(n) there must exist a first i €{2, -, q;(n)} such that
x € hy(n)™" Cy(n), we have, for each i =1, q;(n),

p(Cy(n)\hy(n) - Aj(n)) = u(Cii(n)) — p(A;(n))
q,n)=1

2:1 :U*(hii(n)_l ' Cij(n)\h,'_,.l,j(n)_l . Ci+1,j(n))

IIA

lq,(n)-l

(1) =5 2 #(8(n) C(m)AC,(n)

=(3)- (0/q(n)) (q(n)u(Cy(n)))  (by Definition 1.3)
= (8/2)" w(Cy(n)).

This inequality will be used to show that, with respect to the unitary
representation II induced from the given group action, one has

() lim SUPZ a*(y, Z(xa) S(N =1+ (012)) |y IF, for all y € L*(X, p),

n-—w

where, in accordance with the notation of §2, for each j, Z(x a;») denotes the
[1-cyclic subspace of L*(X, i) generated by the characteristic function of the set
A;(n), and d denotes the distance induced from the norm on L*(X, ).

To obtain (2), fix y, and, for each n, let

N g
)= S ay ()

=1 i=t

-
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be the projection of y onto the subspace of L*(X,p) spanned by {xc,m:
i=1,--+,q(n); j=1,---,N}. Then

2

d*(y(n), Z(x am) = " y(n)- <"§":'1) a;(n)- H;.,.,.(..)XA,<,.))

-|ym- (i) (1) Xaoraio)

2

=3 (S lmmbuicao)

q;(n)

+ 3 a(m) PGy (1) () Ay(m)

=3 (S lamrucum)

#i

X
-

-

q;(n)

+0/)- 5, lay(mFu(Cym) by ()

Summing over j, this gives

3 @5 (1), Z () = (N = 1+ @)y,

Inequality (2) now follows, because the hypothesis that £(n)— ¢ implies that
y(n)—y as n—>®,

We are now in a position to use Proposition 2.1. Fix a positive integer k. Let us
denote by m, the essential supremum of the restriction to G. of the spectral
multiplicity function m. Choose an arbitrary positive integer ! no greater than
me. Then, by 2.1, there exist unit vectors y,---,y, in L*(X, ) such that

2 d(y, Z(2))z 1~ k, forallz € LA(X,p).
s=1
Applying this inequality with z = x 4., and summing over j, gives
! N
2 Y d(yn Z(tae) Z NI - k).
s=1j=

Inequality (2) now implies that

I(N-1+(0/2))= N(I - k).
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When 6 is less than 2, this is equivalent to:
I =2Nk/(2-86).

Since ! was defined to be an arbitrary positive integer less than or equal to m,,
we conclude that

m, =2Nk/2-8), forallk €{1,2,---}.

This completes the proof.

ReMARK 3.2. When G is abelian, so that dimA =1 for all A in G, Theorem
3.1 gives the uniform bound [2N/(2— 6)] on the spectral multiplicity of the
G -action. If 8 is less than 2/(N + 1), this bound is equal to N, the best that could
be expected using multiplicity N approximations.

Chacon [2] obtained the bound N for the special case (see Remark 1.5) of a
multiplicity N approximation, with speed 8/n, 0 = 6 <2/(N + 1), of a measure-
preserving automorphism of probability space. Stepin [13] showed that a
measure-preserving automorphism of a probability space which admits a cyclic
approximation with speed 6/n, 8 <2, must have spectral multiplicity uniformly
less than or equal to [2/(2 - 6)].

Remark 3.3. Returning to the general case of an action of a type I group,
observe that if one is given a multiplicity N approximation with speed o(1/n),
then the theorem implies that

m(A)=N -dimA, foralmost all G.

This inequality may be interpreted as bounding by N the number of cyclic
components needed to make up the unitary representation induced from the
group action (see Remark 2.4).

The next two theorems are straightforward generalizations of theorem 1 of [13]
and theorem 2.1 of [6]. The reader may check that the proofs of these earlier
results can be extended so as to cover our more general situation.

THEOREM 3.4 [13]. Let there be given a measure (u)-preserving action of a
non-compact, locally compact, second countable, abelian group G on a standard
Borel space X. Suppose that there exists a sequence of semi-partitions &(n),
n=1,2,--- and a sequence of group elements g(1), g(2), - - satisfying

(i) £(n)—e asn—ow,
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(ii) lim,_.g(n)=, and
(iii) there exists a constant 6 <1, independent of n, such that, whenever
Ceg(n),

u(g(n)-CAC)= 0 (C).

Then the maximal spectral type of the group action is singular with respect to the
Haar measure on the dual group G.

THEOREM 3.5 [6]. Suppose that a measure-preserving group action admits a
cyclic approximation with speed 6/n, 8 Z 0.

Then that action has a finite ergodic decomposition. If § <4, then the action is
ergodic. In general, the number of ergodic components is no more than
max (1, 6/2).

ReMark 3.6. Unlike the other results of this paper, Theorem 3.5 applies to
actions of arbitrary groups.

ReMARrk 3.7. The hypotheses of Theorem 3.4 are satisfied if the group action
admits a cyclic approximation with speed 6/n, 0 = 6 <1, provided that the group
elements gi(n), -, gum(n), n=1,2,--+, specified in Definition 1.4 may be
chosen so that

lim gy * 8a-1(n) + - - g1(n) = .
§4. Applications

As an illustration of the general techniques developed in the previous sections,
we have the following elementary example.

ExamrLE 4.1. Let v, and vy, be rationally independent real numbers. Con-
sider the Z*-action on the real line defined as follows:

(ki k2)-x = x + kyyi+ koys, forall (ky, ko) EZ? andx ER.

This action preserves the Lebesgue measure, denoted u.

The rational independence of y, and y, implies that, if C and C’ are arbitrary
sub-intervals of R of the same finite length, then, given any £ >0, arbitrarily
large integers k; and k., may be found so that p((k,, kz) - CAC’) is less than .
From this it is clear that the sequence of semi-partitions
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Emy={[in,i+1/n):i=—-n? -n*+1,--,n%, n=12,---

provides cyclic approximations of the given Z>-action with arbitrary speed. This
sequence of semi-partitions also satisfies the conditions of Theorem 3.4. Hence,
from the results of the previous section one may deduce that the given Z*-action
is ergodic and has simple, singular spectrum. (Note that it is possible to obtain
the spectral decomposition of this Z*-action by direct means.)

We now proceed to a study of the class of cylinder transformations,
{T.p:a, B €(0,1)}, defined in the introduction. The space [0,1) X R, on which
each T, acts, is taken to be equipped with the product, denoted u, of the
Lebesgue measures on [0,1) and R respectively.

For each x €ER,

[x] denotes the integer part of x,
(x)=x—[x], thefractional part of x,
and
((x)) = min ({x), 1 — (x)), the distance from x to the nearest integer.

If [ is a positive integer, then T, z acts on a point (x, ¢) in [0, 1) X R as follows:
P p

Tes(x, t)= ((x +la), t + Zo Xwo.e{{x +ia)) - lB).

In order to estimate the vertical components of the translations brought about by
iterates of T., we introduce the sequence of ‘‘discrepancies”

Dy(a)= sup , 1=1,2,--

Osa<b=l

AD'Z, Xienie) = (b - @)

Note that, for each positive integer /, the vertical distance through which T,

shifts a point in [0,1)X R is never more than 2ID;(a). The sequences of
discrepancies, Di(a), I = 1,2, - - -, a irrational, have long been studied in connec-
tion with the irregularity of distribution of the sequences i, i=1,--- (see
Kuipers and Niederreiter [9]). We shall have use of the well known result that,
for any irrational a, the sequence [Di(a), | = 1,2, -, is unbounded.

ProprosiTION 4.2.  Suppose that « is an element of (0, 1) for which there exists a
sequence of irreducible fractions p./q., n =1,2,3,- -+, such that, as n - x,
(i) g. /",
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(i) s.q2]a = pa/q.|— 0, where s, = sup.sis,, IDi(a) for each n.
Then, whenever 8 € (0,1) satisfies

(iii) lim inf,-..max (((g.B8)), (1/((g.B))) - s.q @ ~ pu/qn]) =0,
the transformation T, has spectral multiplicity uniformly equal to one.

Proor. Note that in order that condition (iii) be satisfied, B8 must be
irrational. Hence ((g.8)) is non-zero for all n. Also, by going to a subsequence of
the given sequence of irreducible fractions, we may assume that B satisfies

lim (4.8 = 0,
(iii)
lim (s /((q+8))) gl @ = pa/qn| = 0.

We shall show that, under these. conditions, the (Z-action generated by the)
transformation T, 4 admits a multiplicity one approximation with speed o(1/n).

Fix-a positive integer n, and split the space [0,1) x R into a disjoint union of
the 2q. ‘“‘columns” of the two “‘types” Ei(n) and Fi(n), k=0,---,q. ~ 1,
defined by

E.(n)= [k/q,,kiqifﬁi))xk
and
Fk(n)=[u%§—>,k—;—l>xk

The effect of the transformation T, . s on any of these.columns is a rigid
transhation with horizontal component p./q. (mod 1) and vertical component
either 1 — B or — B, according to whether the column in question lies to the left
or right, respectively, of the vertical line

L={(x1t)€eE[0,1)xR:x = B}.

Note that each column lies entirely to one side or other of L. Focussing on the
horizontal component of this translation, we see that for each k €{0,-- -, g, ~ 1},

T:n/quE‘( (n) = Ex.p,(modq(n)
and

T;,./q...aFk (n) = Fusp,moaan(n).
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Thus, the irreducibility of the fraction p./q. implies that, as a permutation of
either {Eq(n), - -, E,-1(n)} or {Fo(n), -, F-i(n)}, Ty 1.6 is cyclic. Hence, to
determine the net translation of a column under g, iterations of T, g, it is
necessary only to count the number of columns of the same type lying on either
side of L. The columns to the left of L are Eyn),--+,Ey,s and
Fy(n), -, Figp-1(n). Upon making the calculations

(48] + 1)1 = B)~(g. ~ ([g:B] + 1))B = 1-(q.B)

and

[an] (1 - ﬂ) - (qn - [an])B == (an )

we conclude that T, translates each E,(n), k =0, --,¢,— 1, vertically

upwards by 1—(q.B) units, whereas each Fi(n), k =0,--+,q, — 1, is translated
vertically downwards by (g.83) units.

The above observations allow us to use T, s to define our n-th approximat-
ing semi-partition,

£(n)={CG(n):i=1,--,6rq4.},
by choosing
Ci(n)=TpjesCi(n),  foreachi€fl,- -, 6rq.},
with r, = [(s, + 1)/{(q.8))] and

[ {(%,1)€ Eo(n): = 3r.((@B) = t < (=31, + D) (gB),
if (8N =1~(q.B8),
Ci(n)=1
{(x, ) € Fo(n): Br. — ){qBN =t <3r. {8},

it (q.B)) = (a.B).

Each element of ¢(n) is a rectangle of base (1 —(q.8))/g., filling a horizontal
strip of depth ((g.8)) across the column in which it lies. In the case when
({(g.B)) = 1—{q.B) (respectively (g.B)), the rectangles Ci(n), - -, C, (n) lie, one
in each of the columns Eyn),---, E,_.(n) (respectively Fy(n), -, F,_«(n)),
forming a pattern in which no element is vertically displaced with respect to

Ci(n) by more than 2s, units (see the remarks accompanying the definition of
the sequence of discrepancies). The other elements of £(n) may be obtained by
taking 6r, — 1 successive vertical shifts of this basic pattern, upward (respectively
downward) by {({(g.B)) units. This implies that the elements of £(n) are indeed
disjoint, and by the choice of r,, that
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[(u Ec(n) ) 1[0, )% [~ 505.),
if ((g.B))=1-{q.B),
*) U €29

Ce&{(n)
(U R )n@.0x1= 5,5,
it (g.8))= (a.B)

Note that, for all Borel subsets A of [0,1) X R with u(A) <, the following
hold:

Jm w((U Bm)na)-wa)
and

9,1

s R)n)=wiar

Since s, — , and the dimensions of the rectangles in £(n) tend uniformly to zero

as n — %, we can thus conclude from () that £(n)— ¢ as n >,
Furthermore,

6rq —1

(1/(67:gnpa (C1))) - ; # (TupCi(n)AC ()

_(6rg. = 1) -2|a — p./q.]{(guB)
67.q. - (1 = {(g-8)/9.){(g-B))

3 (121, ~ 20l = puga]
(6re) =0 (.87

= 0(1/6r.q.),
by (ii1)’ and the choice of r,, n =1,2,---

Hence, the semi-partitions ¢é(n), n = 1,2, - - -, define a multiplicity one approx-
imation of T, with speed 0(1/n). It only remains to apply Theorem 3.1.

Under the conditions of Proposition 4.2, the transformation T., must have
singular spectral type. This follows from:

ProposiTION 4.3.  Suppose that o and B are irrational elements of (0,1) for
which there exists a sequence of irreducible fractions p./q., n =1,2,---, with
(i) g. 7 », as n—>o»,
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(i) for all n, 2qila —p./q.| =6 <1, where 0 is some constant, independent
of n,

(iii) lim inf, ... ((g.8)) = 0.

Then the cylinder transformation T, has singular spectral type.

Proor. Choose a positive constant, a, with 6 +2/a <1. By going to a

subsequence of the given sequence of irreducible fractions, we may assume that
(gBN—0  as n—>oo,

and that there exists a constant ' <1 with
1) 0+@2la)+2g.BN=0", for each n.

Consider an arbitrary rectangle in [0,1) X R of the form

C = [k/qu (k + 1)/g.) X [t,1 + a {(g.B));
with k €{0,--,¢.— 1}, tE€R.

Let C’ be the subrectangle defined by:

(k/qn (k +(q.8))/q-) X [t, £ + a{(g-B))),
if ((g:8))=1-1(q:.B),

C'=
[(k +(q.B))/gn, (k + 1)/g.) X [t,t + a {(g-B))),
if ((g.8))=(g.8)-
Note that
) p(CAC) = (BN (C).

From the proof of Proposition 4.2, it is clear the Ty, ,C' is just a vertical
translate of C’ by =((g.8)) units. Hence,

€) 1 (T, sC'AC) = 2la)p (C).
Now,

q, o e )
u(TEC AT, 10,6C) S 2 0 (T ThansC'ATZS TrjansC')

q, -1

= ZO w(Tup T;zn/qmﬁc ‘A Tyiqn8° T;../qmac ')

4
( ) =qn'2|a_pn/qn|a«qnﬁ)>

= 0u(0), by condition (ii).
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Here, we have used the fact that under any iterate of T, ,, g, the rectangle C' is
translated to another rectangle of the same type. This is apparent from the proof
of Proposition 4.2.

Together, (1), (2), (3) and (4) imply that, for any rectangle C of the assumed
type,

w(T2CAC)=6'u(C).

Since B is irrational, {(¢.8)) is never zero, and the proof of the proposition
may be completed by applying Theorem 3.4 to the sequence of partitions defined
as follows:

§(n)={lk/qn (k +1)/q.) x {la{(q.8)), (1 + al(g-BM:k =0,---,q. — 1, |EZ},
foralln=1,2,---.

Now, consider the case when the parameter 8 is rational, say equal to ¢/d in
lowest terms. Then, for all @ in (0, 1), any vertical translate of [0,1)x d™'-Zisa
T.s-invariant subset of {0,1) X R. Thus, we are led to define a new measure-
preserving automorphism, denoted S.../q, by taking the restriction of T4 to the
space [0,1)xd™"'-Z (equipped with the obvious product of Lebesgue and
counting measures). The class of transformations {S...4: @, c/d € (0,1)} is of
interest in that it provides examples of approximations of all finite multiplicities:

ProprosiTioN 4.4.  Let c/d be an irreducible fraction in (0,1). Suppose that
a €(0,1) is such that there exists a sequence of irreducible fractions p./q.,
n=172--- satisfying

(1) no ¢. is a multiple of d,

(ii) g. /" ® asn—x,
and

(iii) s.g5la = pa/q.|—0, as n — =, where, as before,

S. = sup ID/(a), foreachn.

1=l=q,

Then the transformation S ...,s admits a multiplicity d approximation with speed
o(1/n) and, hence, has spectral multiplicity less than or equal to d.

Proor. Put b, = d{(g.c/d). Then, by (i), b. belongs to {1,2,---,d — 1}, for
eachn=12---.

From the proof of Proposition 4.2 it is apparent that the columns, defined this
time by
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Ei(n)=[k/qnk/q. + b./dg.)x d - Z
and
Fi(n)=[k/q. + b./dq.,(k +1)/g.)x d - Z,

for k €{0,---,q. ~ 1}, have the following properties with respect to the re-
stricted transformation S, ;. ./4:

(a) each column is rigidly translated by S, /...« Onto another column of the
same type,

(b) as a permutation of either {Eo(n),- -, E, _i(n)} or {Fy(n), -, F, (n)},
S iancra 18 cyclic,

(c) under S,7/,.cis» €ach of the columns Eo(n), - -, E, (n) moves vertically
upwards by 1—(g.c/d) units (d — b, ‘“‘levels”), and

(d) under S;7... each of the columns Fy(n), -+, F, (n) is translated
vertically downwards by {g.c/d) units (b, “levels”).

Note that by a level of a column we mean one of the doubly infinite stack of
intervals of which it is composed.

These properties lead us to choose our sequence of approximating semiparti-
tions as follows:

For each n=1,2,---, we put

En)={Ci(n):i=1,---,6rg,;j=1,--,d},

where we define
Ci(n)= S, jacaCij(n),  foralli andj,
with
r.=d[s. +1]
and
{ [0, b./dq.) x{(= 3r, +j)/d}, for j=1,---,d—b,
Cii(n)=
[b./dq., 1/q.) X {(3Br. + j— d)/d}, for j=d—b,+1,--- d.

The intervals Cy(n), -, Cia-p,(n) (respectively Ciap,1(n), -+, Cia(n))
have been chosen to be successive levels of the column E(n) (respectively
Fo(n)). This implies, using (a) and (b) above, that £(n) admits the following
subdivision by columns:

For each k €{1,---,q.}, whenever i€{k +1lg,: 1 =0,---,6r, — 1}, the ele-
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ments Ci,(n), - - -, Cia-s,(n) (respectively Cia_p.i(n),- -, Cia(n)) are successive
levels of the column S} 75 ..o Eo(n) (respectively Sk i ...Fo(n)). Note that each of
the columns Eo(n),---, E,_.(n) (respectively Fy(n)," -, F,-i(n)) is of the form
St aciaEo(n) (respectively ;7. .aFo(n)), for some k €{1, -, q.}.
Now, for fixed k € {1, -, g.}, property (c) (respectively (d)), above, implies
that if i€{k +1g.: 1 =0,---,6r, — 2}, then the intervals Ci., (n), Ci.q.(n),
<y Ciigua-v(n) (respectively Ciig a-p+1(n), -+, Cug.a(n)) occupy the next
(d — b,)-tuple of successive levels of S;; ..«Eo(n) above (respectively the next
b-tuple of successive levels of S, .«Fo(n) below) that occupied by
Ciu(n), -, Cius,(n) (respectively Ciu-p.i(n), -+, Cq(n)). Thus, within the
columns Eo(n), - - -, E,-(n) (respectively Fy(n), - - -, F, -(n)), the semi-partition
£(n) contains stacks of 6r,(d — b,) (respectively 6r.b,) consecutive levels. The
lowermost (respectively uppermost} levels in these stacks are, modulo a reorder-
ing, Ci.\(n), Coi(n), « -+, C,.(n) (respectively C.a(n), Csra(n), -+, C,.a(n)),
none of which, by the definition of s,, is more than 2s, units vertically displaced
from the 3r,th level below (respectively above) the horizontal axis. Since, by the
definition of r,, a vertical displacement of 2s, units spans no more than 2r, levels,
we see that
{(x,j/d).xel0,),je{-r,—r+1,-- n}}Cc U C foralln

Cceg(n)

Together with the uniform convergence to zero of the lengths of the elements
of £(n), this inclusion implies that £é(n)— ¢ as n— .

The rest of the proof is exactly as for 4.2. The details are left to the reader.

The following proposition may be proved in the same way as Proposition 4.3.

ProposiTION 4.5. Let a be an element of (0,1) for which there exists a
sequence of irreducible fractions p./q., n = 1,2, -, satisfying

(i) each q. is a multiple of d,

(i) g. ~/ o, as n >,

(iii} there exists a constant 8 <1 with

2q:la~p.lq.|= 6,  foralln.
Then the transformation S,.,q has singular spectral type.
RemARK 4.6. The conditions on the parameter @ hypothesized in Proposi-

tions 4.2-4.5, respectively, are satisfied on residual subsets of the parameter

space (0,1). In the cases of 4.3 and 4.5, these subsets have Lebesgue measure
one.
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It may be shown that, for any a which satisfies the conditions of either 4.2 or
4.3, the corresponding condition on the parameter B is satisfied by a residual,
measure-one subset of values in (0, 1).

ReMaARrK 4.7. From the proofs of Propositions 4.2 and 4.4, the transforma-
tions T'p /.6 and S, ...z used in approximating T.s and S, .., respectively, may
be seen to have infinite Lebesgue spectrum (in fact, these transformations are
dissipative—each have a wandering set whose transforms cover the whole
space). The question arises whether either of the transformations T,z or S,/
may have Lebesgue spectral type (with finite multiplicity?) for some irrational
value of a?

Remark 4.8. It follows from [11] that the conditions of Proposition 4.4 are
sufficient for ergodicity of S,/

The following proposition summarizes a number of spectral observations
which do not depend upon the method of approximations. Note that the
maximal spectral type and spectral multiplicity functions of any measure-
preserving transformation are defined on the circle group K ={z € C:|z|=1}.

PRropOSITION 4.9. Let a and B be arbitrary elements of (0,1). Then

(a) the transformation T, has maximal spectral type and spectral multiplicity
function both invariant under each of the following transformations of the circle
group:

(i) z—2Z, z €K, the reflection in the horizontal axis,

(i) z—e™™ -z, z €K, the rotation through the angle 27a,

(iii) z—>e*™* -z, z € K, the rotation through the angle 2mg3;

(b) when B is rational, the same is true of the maximal spectral type and spectral

2mia

multiplicity function of the transformation S,;;
(c) in the special case when B equals 3, the spectral multiplicity function of S. s is
even almost everywhere on K.

Proor. For each t €R, let V.5, denote the unitary operator defined as
follows on L*[0,1):

(Vapey)(x) = exp(=27it(x op(x) — B))* y (x + a (mod 1)),
forally € L*0,1)and x €0, 1).
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By conjugating with the Fourier transform in the R-coordinate, it is not
difficult to show that the unitary operator induced on L*(0,1) X R) by T., is
unitarily equivalent to [@ V,,.dt, the direct integral operator on the space
JEL?0,1)dt which acts on each norm-square-integrable vector field
t—y, :R—>L?0,1) as follows:

&
((f V,X,B,;dt) . y) = Va,B,zy” forallt € R.
R t

Similarly, if ¢/d is an irreducible fraction in (0, 1), then the unitary operator
induced on L*([0,1)x d"'Z) by S..,« may be shown to be unitarily equivalent to
fﬁ)a,d) V acraddt.

Now, check that the identities

(l) wi Vn(,ﬁ,th = Vi,a,—: (= Vi,c/d,d—n if B= C/d),

(i) W3V.pW2=e"V, 4, and

(ii)) Vi1 = eV,
hold for all possible values of the parameters, where W, and W, are the unitary
operators on L*[0,1) defined by setting

Wiy(x)=y(a + 8 — x (mod 1))
and

Waoy(x)=e>™y(x), forally € L’[0,1)and x € [0,1).

The identities (i), (ii), and (iii), applied to the stated direct integral decomposi-
tions of the unitary operators induced from T, and S. s, imply that each of these
operators is unitarily equivalent to (i) its adjoint, (ii) itself multiplied by e*™, and
(iii) itself multiplied by e*™, respectively. These unitary equivalences prove
parts (a) and (b) of the statement of the proposition.

Now, note that

WiV Ws= Voo, foralla €(0,1), t€E€R,
where W is the unitary operator defined on L0, 1) as follows:
Wiy(x)=y(x +i(mod1)), forally € L*0,1)andx €[0,1).

It follows from this identity that the direct integral decomposition of the
unitary operator induced from S, splits as the direct sum of two isomorphic
parts: [, V.i.dt and [, V.14t This proves (c).

CoroLLarY 4.10. If « satisfies the conditions of Proposition 4.4 with c/d =},
then the spectral multiplicity of the transformation S, is uniformly equal to two.
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ProBLeM 4.11. Is it possible to conclude, in general, that under the condi-
tions of Proposition 4.4, the spectral multiplicity function of S... is uniformly
equal to d?

ReEMARK 4.12. From the direct integral decomposition used in the proof of
4.9, one may deduce that if T, has simple singular spectrum, in particular if a
and g satisfy the conditions of Proposition 4.2, then the following holds: there
exists a null subset N of R such that for each t € R\N, the operator Vg, has
simple, singular spectrum, disjoint from that of any other V5, with " € R\N.
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